Daniela Federici – Valentino Parisi
Università degli studi di Cassino e del Lazio Meridionale

Corporate Taxation and Exports

November 2012
Corporate Taxation and Exports
Daniela Federici (University of Cassino and Lazio Meridionale)
Valentino Parisi (Università of Cassino and Lazio Meridionale)

Abstract
This paper analyses the relationship between corporate taxes and exports at firm level in Italy. We use an integrated dataset that combines for the period 2004-2006 survey data (Indagine sulle Imprese Manifatturiere) on enterprises and company accounts for the manufacturing sector to estimate a Probit and a Tobit model. Our results suggest that export participation as well as export intensity increase with corporate taxation. Consistently with recent developments of the corporate tax incidence theory in an open economy, this finding can be traced out to greater ability of exporting firms to shift the tax burden on international markets, compared to domestic firms. Calculation of the average and the marginal corporate tax rates uses the methodology recently developed by Egger et al. (2009) which allows deriving firm-specific effective corporate tax rates.

Keywords: corporate taxation, exports, effective tax rates, Italy

JEL Classification: H25, H32; F14

Address for correspondence:
Valentino Parisi
Department of Economics and Law
University of Cassino and Lazio Meridionale;
Via Sant'Angelo, località Folcara
03043 Cassino (FR) - Italy
tel: +39 0776 2994664
fax: +39 0776 2994834
e-mail: valentino.parisi@eco.unicas.it

Results presented in this paper rely on micro-data from the 10th survey Indagine sulle Imprese Manifatturiere carried out by the Unicredit Bank on a sample of firms of the manufacturing sector, and company accounts available through CERVED. We thank Tony Riti for making such data available. The usual disclaimer applies.
1. Introduction

There is a growing body of literature analyzing the export behaviour of firms. Mostly, researchers have investigated the differences between exporters and non-exporters with regard to readily identifiable firm characteristics. Firm specific attributes and sector wide characteristics have been used to model export propensity, and among these, productivity, firm size, firm age, product and export market diversification have been focused upon. At the sector level, measures of concentration or competition have received the maximum attention. Exporters tend to be larger, more productive, use more capital intensive production and employ a more highly skilled workforce (see, e.g., Bernard and Jensen 1995, 1999, 2007; Eaton, Kortum and Kramarz 2004, 2008; Wagner 2007; Mayer and Ottaviano, 2007; Greenaway and Kneller 2007 for a survey of the literature).

Theoretically, productivity, used as a proxy for efficiency, is considered the key factor determining the difference in export behavior of firms. Successful export performance is due to certain firms having high enough productivity to overcome the costs of exporting (see, e.g., Bernard et al. 2003; Melitz 2003; Melitz and Ottaviano 2008).

This paper is motivated by new insights in the light of the recent heterogeneous firm’s literature, initiated by Melitz (2003). This literature has extensively analyzed firms export behavior unveiling a number of new and interesting stylized facts and what it adds to our understanding of export activity is that a combination of sunk costs and heterogeneity in the underlying characteristics of firms explains why not all firms export.

Despite an overlap in the vector of determinants across studies, the international evidence on export activity determinants is mixed. Results from different countries and industries point in different directions.

Our aim is to add new insights on the determinants of firms’ export performance in a world of heterogeneous firms focusing on the relationship between corporate taxes and exports at firm level. In our opinion, heterogeneity in firm-specific costs (taking into account corporate taxation) seems interesting as heterogeneity in productivity or other factors.

We start out from the observation that firms’ export shares (export to sales ratio) vary greatly among enterprises and tend to be systematically related to the firms characteristics. Modeling}

1 See also Bernard et al. (2007), and Mayer and Ottaviano (2007) for comprehensive surveys of the empirical literature.

exporting activity at the firm level throws up a range of possible channels through which exporting might be linked to firm characteristics. In our work, we relate differences in export shares to firm level differences in corporate taxation incidence and we focus on firm responses to corporate taxation changes. Accordingly, when governments change corporate tax rates, by virtue of firms' heterogeneity in the composition of their capital stock, investments financing and involvement in foreign markets, they induce heterogeneous effects across firms.

The actual incidence of the corporate tax is one of the most controversial issues in tax policy analysis since the seminal paper of Harberger (1962). The issue of who effectively bears the burden of the corporate income tax has not been settled so far, whether by theory or empirical work (for a review of tax incidence in general, see Fullerton and Metcalf, 2002). Our analysis is related to the Gravelle and Smetter (2006) paper that reconsiders the incidence of capital taxes in an open economy and interestingly finds that most of the incidence is exported.

The empirical analysis presented in this paper uses micro data for a representative sample of Italian manufacturing firms, drawn from a reliable dataset, and examines to what extent corporate taxation affects firms' export behavior. Specifically, we use an integrated dataset that combines the Indagine sulle Imprese Manifatturiere collected every three years by the Unicredit Bank with company accounts provided by CERVED. Data refer to the period 2004-2006. Computation of the average and marginal corporate tax rates builds on the methodology recently developed by Egger et al. (2009) which allows calculation of firm-specific effective corporate tax rates.

The relation between corporate taxation and firms' export behaviour remains largely unexplored, particularly at the micro level. Indeed, most studies are carried out at the macroeconomic level. For example, Keen and Syed (2006) consider the ways in which the tax structure might affect exports. The authors use panel data for OECD countries from 1967 to 2003 to examine the effects of corporate taxes on export performance and find that increases in corporate taxation—whether measured by revenues or the statutory rate—are associated with sharp short-run increases in net exports.

Two dimensions of firm level export performance have been focused upon: export propensity and export intensity. The former is defined as whether or not a firm is an exporter. The latter is measured as the ratio of export sales to the firm total sales. Among the two dimensions, export propensity features more prominently in the literature (see Hiep and Nishijima, 2009 for a review). The reason behind this is that researchers might consider the decision to export or not to
be made simultaneously with the decision of how much to export. However, recent papers such as Helpman et al. (2008) and Lawless and Whelan (2008) find that although the two decisions are interdependent, they are different and the impact magnitudes of each factor on the two decisions are heterogeneous. This supports our choice to undertaking separate investigations to identify the determinants of exports.

The organization of the paper is as follows. The next section lays out synthetically the recent reforms of the Italian corporate tax system. Section 3 set up the basic framework to compute the effective tax rates. Section 4 states the theoretical background of the relationships between corporate taxation and exports. Section 5 describes data and methodology. Section 6 discusses the estimates results. The last section concludes.

1. The Italian corporate tax system and its recent reforms: an overview

From its inception in the early 1970s, the Italian business income tax regime changed only marginally for over twenty years. Indeed, until the mid-1990s, while other countries adopted reforms of the base-broadening/statutory rate cut type (Messere et al., 2003), Italy moved in the opposite direction, actually increasing the corporate tax rate. Starting in 1997 then Italy enacted two main reforms with the declared objective to reduce corporate taxation in order to foster firms’ competitiveness, as well as to simplify the system.

The first reform (1997) was mainly based on the introduction of the so-called Dual Income Tax (DIT) system, basically an Allowance for Corporate Equity (ACE), and of a new tax (IRAP) as a replacement for pre-existing taxes (ILOR, a tax on companies’ net assets) and health insurance contributions paid by firms.

3 This section draws on Oropallo and Parisi (2007).

4 At the eve of the first reform, corporations were subject to two taxes, the corporate income tax (IRPEG), with a rate of 37%, and a local income tax (ILOR), with a rate of 16.2%.

5 An ACE system has a number of attractive properties. The first is that it meets neutrality between debt and equity financing if tax parameters are chosen correctly. The second feature is that as the tax is not levied on the marginal investment, this system is neutral to firm investment decisions. Another property is that the system offsets the distortion originated by the difference between depreciation for tax purposes and economic depreciation (Boadway and Bruce, 1984), as the advantage generated by tax depreciation is fully compensated by the reduction of (future) allowances. In this sense an ACE is again neutral over company investment decisions.

6 This is a regional tax paid by corporations and unincorporated firms on their value added net of depreciation and amortisations, i.e. with no deduction of interest expense and labour costs from the tax base. The statutory tax rate is 4.25%, although since 2000 regions may vary the rate within specific limits.
The DIT system worked as a dual-rate schedule in which overall profits are divided into two components. The first approximates normal profits or ordinary profits, i.e. the opportunity cost of new financing with equity capital compared with other forms of capital investments, and was taxed at the preferential rate of 19%. The second component of overall profits is computed residually from total profits after normal profits and represents business extra-profits. It was taxed at the prevailing statutory rate of 37% up to 2000, cut to 36% in 2001. As a result of the operation of the DIT scheme, the “effective” statutory rate ranges between 19% and 36%, depending on the amount of profits qualifying for the allowance.

Therefore, given the features of the DIT allowance, the primary policy objective was a selective reduction in the burden of taxation, to reduce the tax distortion between equity and debt financing.

The second reform came into effect in 2004 and actually responded to a different policy design. Indeed, the general declared aim of the policy maker was to simplify the tax treatment of firms through standardisation of capital income taxation, the abolition of the dividend tax credit and group taxation, as well as to foster firms’ competitiveness. Concerning the neutrality issue, the idea behind the reform is that the tax system should not interfere with firms’ financing decisions. Consequently, the incentives for equity capital provided by the DIT allowance are eliminated.

The features of corporate income tax system introduced in 2004 are: i) the abolition of the dual-rate system and the introduction of a single rate of 33%; ii) the introduction of a participation-exemption regime and the abolition of the dividend tax credit; iv) the introduction of thin capitalisation rules; iv) the introduction of an optional consolidated tax declaration for groups that can be extended also to foreign subsidiaries.

Therefore the overall tax rate sums the corporate tax (33%) and the IRAP tax rate.

Recently some changes were introduced to the system described above. In 2008 thin capitalisation rules were repealed and the introduction of a new limit on interest costs deductibility linked to the company operating income. In 2011 a new version of the ACE system, called Aiuto alla Crescita Economica was introduced.

7 The DIT allowance was subject to several changes in the period in which it was in operation, mainly aiming at accelerating the application of this allowance while at the same time preserving revenue losses given the public finance obligations Italy had to meet within the European Monetary Union process. Also it must be noted that while this allowance was definitely repealed in 2004, in July 2001, when a new government took office, some changes were made to the mechanism in order to curb its effects. These changes anticipated the intention of the (new) policy maker to abolish the dual-rate allowance. On these aspects see Oropallo and Parisi (2007).
2. **Computation of effective corporate tax rates**

The methodology to compute corporate effective average tax rates (EATR) is based upon the methodology recently proposed by Egger et al. (2009) to calculate firm-specific effective tax rates. In turn, this bases upon the approach originally developed by Devereux and Griffith (1998) to calculating forward-looking effective tax rates, and widely used in the literature. The idea behind this approach is to compute the tax burden falling on a hypothetical investment project incorporated into a neoclassical investment model, by taking into account the main determinants of the corporate tax system (statutory tax rates, tax allowances, specific investment tax credits) and of personal taxation. Such rates are also defined as forward-looking effective tax rates and have the advantage of being independent of tax planning activities of the company. Therefore, they are exogenous from an empirical perspective.

In this section we describe the basic model we used to derive the effective tax rates for Italy, and refer to the original paper of Egger et al. (2009) for technical descriptions of the model and the various equations.

EATRs measure the average tax burden on an investment giving a pre-defined rate of profitability and are calculated as the difference between the pre-tax net present value of investment (R^*) and its after-tax net present value (R) over the pre-tax rate of return on capital, defined by the ratio between the rate of profitability p and $(1+r)$ where r is the market interest rate.

Formally we have that:

\[1\]

\[
\text{EATR} = \frac{(R^*-R)}{p/(1+r)}
\]

where $R^*=(p-r)/(1+r)$.

The expression of R^* depends on the various items of the corporate tax system that can be modelled, as well as on the source of financing, that is debt, new equity issues, retained earnings (see Egger et al., 2009).

This approach also allows to compute effective marginal tax rates (MTRs), measuring the tax burden on an investment giving no-extra profits, that is an after-tax return which equals the return on an alternative assets. While EATRs usually inform on the effects of the tax system on
firm binary choices, EMTRs study the impact of the tax system on company investment
decisions (at the margin) and its funding sources. We will discuss this point further in section 5.
Formally:

\[EMTR = (p' - r')/p' \]

where \(p' \) is the cost of capital, that is the before-tax rate of return of the investment. For the
equation of the cost of capital, depending again on the company financing sources, see again
Egger et al. (2009). Because we abstract from shareholders’ taxation\(^8\), \(r' = r \).
Below we report the parameters used in the calculation of EATRs and EMTRs, actually based
on the relevant literature:
1. profitability rate: \(p = 0.20 \);
2. interest rate: \(r = 0.05 \);
3. inflation rate: \(\pi = 0.025 \);
4. rate of economic depreciation for machinery: \(\delta_{m} = 0.01225 \);
5. rate of economic depreciation for building: \(\delta_{b} = 0.0361 \);
6. rate of economic depreciation for inventories: \(\delta_{inv} = 0 \);
7. rate of economic depreciation for intangible assets: \(\delta_{I} = 0.15 \).
Computation of firm-specific tax rates comes from the use of weights reflecting the actual
(based on information available in the dataset) company assets structure and its financial policy.
The first are used in the calculation of the net present value of economic depreciation rates\(^9\) (see
equation 11 in Egger et al., 2009). The second are used when weighting the combinations of
financing opportunities to obtain overall measures of EMTRs and EATRs. Specifically, we
assume companies have two choices, equity capital and debt. Choices are weighted on the basis
of the actual debt-equity ratio computed for each firm on the basis of accounts data available in
the dataset\(^10\) and therefore reflecting the companies’ actual financial policy.

\(^8\) This is in line with the literature (see Egger et al., 2009 and Devereux and Griffith, 1998). Indeed, considering that a relevant
part of companies is owned by other companies and that this choice cannot be modelled, personal taxation may not be so
relevant and could lead to biased estimates of effective tax rates.

\(^9\) Specifically, we calculate the share of tangible fixed assets, intangible fixed assets, stock of current assets over total assets, for
each firm.

\(^10\) The debt-equity ratio is defined as the ratio between current and non-current liabilities and company total assets. From the
analysis we exclude firms for which the debt-equity ratio is negative or greater than 1.
Tables 1, 2 display the effective marginal and average tax rates for the years 2003, 2004, 2005, by activity sector (using the Pavitt classification available in the dataset).

Tab. 1 – EATRs by activity sector (Pavitt classification); years 2003, 2004, 2005

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional sectors</td>
<td>35.18</td>
<td>34.87</td>
<td>34.97</td>
</tr>
<tr>
<td>Scale sectors</td>
<td>35.44</td>
<td>34.84</td>
<td>34.94</td>
</tr>
<tr>
<td>Special sectors</td>
<td>36.23</td>
<td>35.86</td>
<td>35.90</td>
</tr>
<tr>
<td>High-tech sectors</td>
<td>35.59</td>
<td>35.15</td>
<td>35.23</td>
</tr>
<tr>
<td>Mean</td>
<td>35.53</td>
<td>35.15</td>
<td>35.23</td>
</tr>
</tbody>
</table>

Source: authors’ calculations

Tab. 2 – EMTRs by activity sector (Pavitt classification); years 2003, 2004, 2005

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional sectors</td>
<td>30.40</td>
<td>29.75</td>
<td>29.90</td>
</tr>
<tr>
<td>Scale sectors</td>
<td>29.65</td>
<td>28.96</td>
<td>29.10</td>
</tr>
<tr>
<td>Special sectors</td>
<td>32.25</td>
<td>32.42</td>
<td>32.31</td>
</tr>
<tr>
<td>High-tech sectors</td>
<td>31.43</td>
<td>31.12</td>
<td>31.02</td>
</tr>
<tr>
<td>Mean</td>
<td>30.82</td>
<td>30.42</td>
<td>30.48</td>
</tr>
</tbody>
</table>

Source: authors’ calculations

EMTRs are usually lower than EATRs, as they can also be negative. The results show that EATRs decrease in 2004, probably depending on the reduction of the statutory corporate tax rate enacted in 2004, but increase, though of a very small amount, in 2005. Also the EMTRs decrease in 2004 but slightly increase in 2005.

3. **Data and methodology**

In the empirical analysis we use an integrated dataset combining micro-data from the 10th survey (2004-2006) *Indagine sulle Imprese Manifatturiere* and balance sheets data. The survey is administered by the Unicredit Bank and is based on a questionnaire sent to a sample of firms of the manufacturing sector every three years. The sample covers 5,134 firms, of which 4,936

11 Data from this survey have been extensively used by other authors to study different aspects of the Italian economy (e.g., Benfratello and al., 2008; Caggese and Cunat, 2008). Most closely related to the present work are a number of papers concerned
corporations and 198 unincorporated enterprises12, and is stratified by size class, geographic area and industry to be representative of the population of Italian manufacturing firms with more than 10 employees (39,868 enterprises). Balance sheets data are collected by CERVED13 and they are exhaustive for the corporate sector.

The final dataset contains information on the firm’s features (size, employment structure, legal status, participation in groups), and the firm’s activity (investments, internationalization, finance). The company accounts contain the information necessary to calculate the firm-specific corporate (marginal and average) tax rates (see section 3).

Tables 3, 4, 5 provide some summary statistics on the companies present in the dataset, respectively regarding the Pavitt activity sector breakdown, the firm size as measured by the number of employees, the number of exporting and non-exporting companies.

Table 3 – Number of companies present in the dataset by Pavitt activity sector (year 2006)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional sectors</td>
<td>2,451</td>
<td>49.7</td>
</tr>
<tr>
<td>Scale sectors</td>
<td>935</td>
<td>18.9</td>
</tr>
<tr>
<td>Special sectors</td>
<td>1,325</td>
<td>26.8</td>
</tr>
<tr>
<td>High-tech sectors</td>
<td>225</td>
<td>4.6</td>
</tr>
<tr>
<td>Total</td>
<td>4,936</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Indagine sulle Imprese Manifatturiere, Unicredit

Table 4 – Number of employees of the companies present in the dataset (year 2006)

<table>
<thead>
<tr>
<th>Size</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-20</td>
<td>1,775</td>
<td>36.0</td>
</tr>
<tr>
<td>21-50</td>
<td>1,591</td>
<td>32.2</td>
</tr>
<tr>
<td>51-100</td>
<td>766</td>
<td>15.5</td>
</tr>
<tr>
<td>101-250</td>
<td>458</td>
<td>9.3</td>
</tr>
<tr>
<td>251-500</td>
<td>170</td>
<td>3.4</td>
</tr>
<tr>
<td>500-1000</td>
<td>80</td>
<td>1.6</td>
</tr>
<tr>
<td>More than 1000</td>
<td>96</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>4,936</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Indagine sulle Imprese Manifatturiere, Unicredit

with internationalization of Italian firms (e.g., Castellani, 2002; Casaburi et al., 2007; Vannoni and Razzolini, 2008).

12 We also include in this group firms not reporting their legal status, which amount to 51.

13 Cerved is a consortium of private equity funds which evaluates businesses reliability and financial structure.
Table 5 – Number of exporting/non-exporting firms (year 2006)

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exporting</td>
<td>3,080</td>
<td>62.4</td>
</tr>
<tr>
<td>Non-exporting</td>
<td>1,826</td>
<td>37.6</td>
</tr>
<tr>
<td>Total</td>
<td>4,906</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: Indagine sulle Imprese Manifatturiere, Unicredit

The majority of firms in the sample operate in traditional sectors (49.7%) and in special sectors (26.8%), while only 4.6% produce in high-tech sectors.

Turning to the firm size we can see that the greatest number of companies can be qualified as small-medium sized companies, employing up to 50 workers, in line with the well-known features of the Italian manufacturing sector.

Finally, over 60% of enterprises present in the dataset export.

Figure 1 illustrates the firm export intensity, measured by the incidence of turn-over from exports on the total, showing that this aggregate is quite relevant.

Figure 1 – Turn-over from exports. Year 2006, % values.

Source: Indagine sulle Imprese Manifatturiere, Unicredit

4. Corporate taxation and exports: the theoretical background

When investigating on the relation between enterprise domestic taxation and export performance, one important consideration for the EMU is that since the introduction of the single currency the Member States cannot rely on exchange rates adjustments as policy instrument\(^\text{14}\). Therefore, the basic point is whether lowering domestic taxation on firms (in the form of social security contributions, the value added tax, taxes on business income) should be considered as an internal exchange rate devaluation and can be used to improve trade balance (Alworth and Arachi, 2008). In this framework the corporate tax rate cutting reforms enacted by most OECD countries in recent years can be interpreted as measures aimed at fostering firms’

\(^{14}\) Empirical investigation of the relationship between exchange rates and exports has a long tradition in the international trade literature (for a review see Clark et al., 2004). This has been maintained as the international trade literature has become more micro-focused following the publication of Bernard and Jensen (1995, 1999) and Melitz (2003). A number of studies have examined the effect of exchange rates on the export behavior of individual firms (Bernard and Jensen, 2004; Campa, 2004; Das et al., 2007).
A few papers explore these theoretical predictions and test empirically the effects of corporate taxation on trade. In this direction, Keen and Syed (2006) set up a two-period model, where investment is undertaken in period 1 and yields output in the following period. Corporate taxation drives investments until its after-tax marginal productivity equals the gross interest rate. A source-based corporate tax reduces domestic investment and results in greater capital exports in the first period. As a consequence the country runs a trade surplus which reduces in the second period given higher income flowing from abroad due to the investment undertaken abroad in the first period.\(^{15}\)

In this model the corporate tax is levied only on the marginal return to investment (and savings) but it does not affect the infra-marginal units (rents). However, corporate taxes in actual systems are designed to bear also on these units. Taxation of rents would have effects on the level of investment only if fixed factors are internationally mobile, that is an increase in the corporate tax will drive investment abroad.

Keen and Syed (2006) also test empirically the impact of corporate taxation on net exports using a panel covering OECD countries in the period from 1967 to 2003. In a static framework they find a significant and robust positive effect of corporate taxation (measured as the ratio of corporate tax revenue on GDP) on export performance. However this effect would fade in the long period (after ten years) where the overall impact of corporate taxation on net exports converges to zero. This is in line with increased income from abroad as a consequence of the initial reallocation of capital abroad, as discussed above.

Alworth and Arachi (2008) test the relation between some measure of the corporate tax rate (corporation tax revenue over GDP) and net exports in goods and services for a panel of OECD countries from 1970 to 2005. The authors find a positive relation and also show that the sensitivity of net exports to the corporation tax has increased after the introduction of the Euro. These results are somehow in line with those of earlier studies. For instance, Slemrod (2004) finds a positive relation between the corporation tax, again measured in terms of the ratio between tax revenue on GDP, and trade intensity.

In analysing the impact of corporation tax on firm export decisions, the obvious basic

\(^{15}\) On the opposite, a residence-based tax has no effect on domestic investments since it does not affect the return required by non-resident investors. Therefore source-based or residence-based taxes actually have very different effects on the pattern of net exports and the questions of whether considering actual systems as source-based or residence-based becomes central. The authors conclude that most corporate tax systems are close to source-based schemes.
assumption is that the tax represents a cost for the firm. In this respect a cut in the statutory
corporate tax rate may be regarded as a cut in the firm tax related cost that may expand
enterprise activity, and along this line also exports. This is consistent with the theory of internal
devaluation.

However, in this simple framework, the effective incidence of the corporation tax plays a crucial
role and must be taken carefully into considerations to examine the effects of taxes on firm’s
activity. The conclusion reached above relies on the implicit assumption that the corporate tax is
effectively borne by the firm, which might not be the case. Furthermore, the degree of enterprise
openness may affect the ability of the firm to shift the corporation tax burden.

The corporation tax incidence is one of most controversial issues in tax policy analysis. The
standard theory was developed in 1962 by Harberger initially for a closed economy, in the mid
70’s extended to the open economy case\(^\text{16}\) (see Harberger, 2008, and for a review Gravelle and
Smetters, 2006, and Aurebach, 2005).

In line with the original analysis of Harberger (2008), Gravelle and Smetters (2006) consider a
four sector (manufacturing-the traded corporate sector, agriculture, services and utilities- the
non-traded corporate sector, trade and services) general equilibrium model of an open economy.
While in the short-run the corporate tax burden falls mainly on capital, in the long-run (a lapse
of time that allows for capital reallocations) the tax incidence depends on four factors: (a) the
elasticity of substitution between the goods produced by the corporate sector and foreign goods;
(b) the elasticity of substitution between domestic and foreign capital; (c) the factor elasticity of
substitution; (d) the elasticity between the goods produced by the four sectors of the economy.

Gravelle and Smetters (2006) show that the tax burden falls mainly on capital and to a lesser
extent on labour, though the shared burden depends on the values of the model parameters\(^\text{17}\).

One interesting and novel result of the incidence analysis developed by Gravelle and Smetters
(2006) is that some of the burden can be “exported”, that is falls on foreign production factors.
Specifically, the exported burden increases with the elasticity of substitution between domestic
and foreign capital and is greatest when product elasticity is low.

\(^\text{16}\) In tax incidence analysis the definition of closed or open economy scenario depends on the assumptions on the countries
behaviour in setting their tax rates. Namely, if one assumes one country (or a small number of countries) changes its tax rate,
while the others leave their tax rates unchanged, the appropriate model is the open economy one. On the opposite, if all
countries (or a large number of countries) change their rates in tandem, they respond to the closed economy model.

\(^\text{17}\) These results are in line with the recent literature on tax incidence (see also Auerbach, 2005), but not on the original
conclusions of Harberger (2008) who argued that in the long-run capital does not bear the tax burden at the expense of labour.
5. **Estimation results.**

The arguments traced above suggest that exporters may have a greater capacity to shift the corporate tax burden on foreign factors and foreign consumers, compared to domestic firms which on the opposite bear much of the tax in terms of a reduced after-tax rate of return on invested capital.

To examine the effects of corporate taxation and industry characteristics on export performance, two different indicators of export performance are used, export propensity and export intensity. However, before turning to the estimation results, one specific point deserves discussion. This concerns the choice of the appropriate tax indicator when analysing the effects of corporate taxation on export decisions (and, more generally, investments).

Export propensity of the firm can be interpreted as a discrete choice between serving only the domestic market or exporting to foreign market. This decision is also similar to the choice a firm faces when deciding whether or not to undertake R&D investments, or the choice of a multinational when deciding between a given number of mutually exclusive locations for its investment, as well discussed by Devereux and Griffith (1998).

In binary choices, given a net present value of the investment, the firm evaluates the impact of taxation on the post-tax present value for each choice (in our case, exporting or serving the domestic market), that is how taxation affects the infra-marginal units, i.e. the ones for which the return of the investment is greater than the marginal cost. So in these cases the most appropriate indicator is represented by the EATR, that as explained in section 3 measures the average tax burden on an investment giving a pre-defined rate of profitability.

Then the size of investment can be modelled as a marginal choice and in this case the relevant indicator is the EMTR. Indeed, this measures how taxation affects the marginal unit, for which the return equals the marginal cost.

6.1 **Export Propensity**

The theoretical decision to export can be expressed as a binary choice model where the dependent variable equals 1 if firm’s exports are positive in that year, 0 otherwise:
We estimate the probability of exporting as a function of the EATR in 2004. In any case, from an empirical point of view, the tax/exports relationship cannot be evaluated without controlling for other characteristics of firms. Here we consider the following additional explanatory variables: the log of net capital (resulting from the balance sheet), the number of skilled workers on the total number of employees, innovation, i.e. if the firm has undertaken innovative investments (either in terms of product, process, organisational innovation) in the period 2004-2006, the geographical area (north-east, central and south), the Pavitt activity sectors, the firm’s age, the log of the firm size (expressed in terms of the number of employees).

Table 6 displays the Probit regression estimates.

| Variable | Coef. | Std. Err. | Z | P>|Z| | 95% Conf. Interval |
|---------------------------|--------|-----------|-------|------|-------------------|
| EATR (2004) | 1.6140 | 0.5388 | 3.0000| 0.0030| 0.5580 |
| | | | | | 2.6700 |
| Log capital | 0.0612 | 0.0152 | 4.0200| 0.0000| 0.0314 |
| | | | | | 0.0910 |
| Innovation | 0.1967 | 0.0420 | 4.6800| 0.0000| 0.1143 |
| | | | | | 0.2791 |
| Skill_laboer | 0.0018 | 0.0006 | 3.2900| 0.0010| 0.0007 |
| | | | | | 0.0029 |
| Geographical area | -0.2449| 0.0460 | -5.3200| 0.0000| -0.3351 |
| | | | | | -0.1546 |
| Pavitt activity sector | 0.0968 | 0.0215 | 4.5000| 0.0000| 0.0546 |
| | | | | | 0.1389 |
| Age | 0.0019 | 0.0010 | 2.0200| 0.0440| 0.0001 |
| | | | | | 0.0038 |
| Log size | 0.2700 | 0.0282 | 9.5800| 0.0000| 0.2148 |
| | | | | | 0.3253 |
| cons | -2.1261| 0.2822 | -7.5300| 0.0000| -2.6792 |
| | | | | | -1.5729 |

Source: Authors’ estimates

Iteration 0: log pseudolikelihood = -24339.986
Iteration 1: log pseudolikelihood = -22791.496
Iteration 2: log pseudolikelihood = -22787.563
Iteration 3: log pseudolikelihood = -22787.563

Number of obs = 4609
Wald chi2(8) = 365.47
Prob > chi2 = 0.0000
Log pseudolikelihood = -22787.563 Pseudo R2 = 0.0638

The probability of engaging in exports is positively affected by the EATR and the coefficient is statistically significant and quantitatively relevant (1.61)\(^{18}\). This result might seem unexpected\(^{18}\). We estimate the same model expressed in eq. [1] using the EATR of 2005 and the main message remains the same: corporate taxation and export choices are positively associated. Indeed, the coefficient is positive (1.98) and statistically significant.
as the basic economic intuition suggests that taxation reduces firm’s activity, and therefore also exports. However, in line with the results of the tax incidence theory, a higher EATR induces firms to “re-locate” their investments and plays an important role in determining firms’ internationalization. As already discussed, the EATR, in our case, refers to discrete “location choice” (domestic or/and export participation) or the extensive margin of exports.

The argument that in an open economy the corporate tax can be exported holds in the long run where capital reallocations are possible. The case we are considering here actually may qualify as an intermediate period rather than a long term. However, it is reasonable to assume that even in the intermediate run internationalized firms have greater capacity than domestic firms to face market constraints, and therefore to shift the tax related cost.

In addition, another potential explanation for this result could be related to the theories of business management that reveal a different channel through which firms’ individual characteristics actions and environment affect export performance. Indeed, exporting activity can be conceptualized as a strategic response by management to the interplay of firms’ internal and external forces. Besides affecting export performance of firms directly, the internal and external factors also indirectly influence export performance by affecting the export marketing strategy of firms. Enterprises trying to shift the tax burden, try to earn larger market shares and profits in domestic and foreign markets. When domestic competition gets “tougher”, domestic rivalry pushes firms to improve efficiency as well as to find new markets, including overseas ones: perceived competition enhances firms’ export involvement (Cloughety and Zang, 2008).

The effects of the remaining variables is in line with the already well-established literature on the determinants of export activity (i.e. Sterlacchini, 2001). The coefficients are significant and they are all positive, except for the geographical area suggesting that Southern firms have lower propensity to export.

The analysis of the marginal effects (table 7), strengthens the role of corporate taxation in influencing export propensity. The value of the estimated parameter is sizeably high (0.62) compared with the coefficients of the other variables. This means that a marginal increase in the average corporate tax rate leads to an increase in the probability of exporting of 0.62 points.
Tab. 7 - Export decisions: Probit estimates; year 2006. Marginal effects

\[y = \Pr(\text{export}_{06}) \] (predict)
\[= .60827022 \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\frac{dy}{dx})</th>
<th>Std. Err.</th>
<th>Z</th>
<th>P>z</th>
<th>[95% Confidence Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EATR (2004)</td>
<td></td>
<td>0.20667</td>
<td>3</td>
<td>0.003</td>
<td>0.21423 1.02437 0.351803</td>
</tr>
<tr>
<td>Log capital</td>
<td>0.023476</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation</td>
<td>0.075806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill_labor</td>
<td>0.000703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical area</td>
<td></td>
<td>0.01624</td>
<td>4.67</td>
<td>0.04398</td>
<td>0.107631 0.610933</td>
</tr>
<tr>
<td>Pavitt activity sector</td>
<td></td>
<td>0.00021</td>
<td>3.29</td>
<td>0.00028</td>
<td>0.001123 31.0811</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>0.01767</td>
<td>-5.32</td>
<td>0.12858</td>
<td>-0.05932 1.27286</td>
</tr>
<tr>
<td>Pavitt activity sector</td>
<td></td>
<td>0.00826</td>
<td>4.5</td>
<td>0.02095</td>
<td>0.053317 1.83004</td>
</tr>
<tr>
<td>Geographical area</td>
<td></td>
<td>0.00036</td>
<td>2.02</td>
<td>0.044</td>
<td>2.1E-05 0.00145 26.4501</td>
</tr>
<tr>
<td>Pavitt activity sector</td>
<td></td>
<td>0.103610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log size</td>
<td></td>
<td>0.01083</td>
<td>9.56</td>
<td>0.08238</td>
<td>0.124842 3.35013</td>
</tr>
</tbody>
</table>

(* \(\frac{dy}{dx} \) is for discrete change of dummy variable from 0 to 1)

Source: Authors’ estimates

6.2 Export Intensity

To go deeper into the relation between corporate taxation and firm’s export activity, we extend the analysis by considering export intensity as dependent variable in the regression model. To estimate how firms’ export intensity is characterized by various factors we should take into account the specific nature of the dependent variable and the heterogeneous nature of firm behavior. By construction, export intensity is bounded between 0 and 1. Furthermore, for non-trivial proportion of sample the variable takes the value of 0. For this reason we use the Tobit maximum likelihood methodology to control for censoring problems. The Tobit model is referred to as the corner solution response where the dependent variable is zero for a nontrivial fraction of the population but is roughly continuously distributed over positive values (Wooldridge, 2006).

The Tobit regression is left-censored as it excludes non-exporting firms:

\[4 \]

Table 8 displays the results of the Tobit regression. In this case the dependent variable is represented by export intensity, measured by the ratio between export turn-over to overall turn-
over at 2006. Consistently with what discussed at the beginning of this section, in this case the relevant tax indicator is the EMTR. Indeed, the EMTR refers to the intensive margin and it is relevant making existing firms grow larger and increase export sales.

Tab. 8 – Export decisions: Tobit estimates; year 2006.

<table>
<thead>
<tr>
<th>Export intensity</th>
<th>Coeff.</th>
<th>Std. Error</th>
<th>t</th>
<th>P>t</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMTR (2004)</td>
<td>0.1132</td>
<td>0.0468</td>
<td>2.4200</td>
<td>0.0160</td>
<td>0.0214 - 0.2049</td>
</tr>
<tr>
<td>Log capital</td>
<td>0.0189</td>
<td>0.0056</td>
<td>3.3600</td>
<td>0.0010</td>
<td>0.0079 - 0.0299</td>
</tr>
<tr>
<td>Innovation</td>
<td>0.0825</td>
<td>0.0155</td>
<td>5.3200</td>
<td>0.0000</td>
<td>0.0521 - 0.1129</td>
</tr>
<tr>
<td>Skill_labour</td>
<td>0.0005</td>
<td>0.0002</td>
<td>2.3200</td>
<td>0.0200</td>
<td>0.0001 - 0.0008</td>
</tr>
<tr>
<td>Geographical area</td>
<td>-0.0803</td>
<td>0.0174</td>
<td>-4.6100</td>
<td>0.0000</td>
<td>-0.1144 - 0.0461</td>
</tr>
<tr>
<td>Pavitt activity sector</td>
<td>0.0442</td>
<td>0.0075</td>
<td>5.9300</td>
<td>0.0000</td>
<td>0.0296 - 0.0589</td>
</tr>
<tr>
<td>Age</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.6400</td>
<td>0.5230</td>
<td>-0.0004 - 0.0008</td>
</tr>
<tr>
<td>Log size</td>
<td>0.0927</td>
<td>0.0096</td>
<td>9.6600</td>
<td>0.0000</td>
<td>0.0739 - 0.1115</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.5336</td>
<td>0.0683</td>
<td>-7.8200</td>
<td>0.0000</td>
<td>-0.6675 - 0.3998</td>
</tr>
</tbody>
</table>

/sigma 0.4273 0.0058 0.4159 0.4387

Source: Authors’ estimates

Number of obs = 4583
F(8.4575) = 56.84
Prob>F = 0.0000
Log pseudolikelihood = -23187.933; Pseudo R2 = 0.0647

Obs. summary: 1806 left-censored observations at export_intensity <=0
2820 uncensored observations
0 right-censored observations

Taxation at the margin has a positive impact on export intensity. A 1% increase in the tax rate increases the share of exports on turnover by 11%. The estimated coefficients are statistically significant at the 5% level. We note that the effects of capital, innovation, skilled labour, geographical area, activity sector, size remain in line with the Probit estimates and the prevailing empirical studies. However, in this case the variable age is not significant and this is not surprising as firms already present in foreign markets have reached the threshold level of competitiveness.\(^\text{19}\)

As for export propensity estimates, it is noteworthy that corporate taxation has the highest weight compared to the other explanatory variables considered in the estimation. The estimated effect seems to go in the opposite direction one might expect, with increases in the marginal tax

\(^{19}\) Years of accumulated experience may capture “learning by doing” effects, but the opposite is expected if younger firms may behave more pro-active, flexible and aggressively. Therefore, the expected sign of the age coefficient is ambiguous and a U-shaped relationship may also be possible.
being associated with increased export sales. Crucially, we argue, that our empirical results can be explained in the context of corporate tax incidence literature and tax burden shifting strategy of firms. In effect, more exported-oriented firms are able to minimize costs by exploiting market opportunities.

Other potential explanations are the following. There are adjustment costs in exporting at the plant level, such as sunk costs of entry and these induce firms to stay in the market even in the case of reduced profits because of higher taxation. Firms’ current foreign participation is influenced by past experience, thus reflecting the existence of sunk costs when involved in trade (Bernard and Jensen 1999, 2004) and the hazard of exit or reduction of participation is declining in the number of years a firm participates in the foreign market. Furthermore, a well-established stylized fact in the empirical literature of international trade is that trade flows exhibit hysteresis and quantitatively, firms that change their participation status are much smaller in average than incumbents. On the other hand, an increase in the tax burden usually induce firms to shift the burden on consumers’ prices but imperfect product substitution in traded goods can be very effective in limiting reduction of sales. In the literature typically is assumed a very low elasticity of substitution between home goods and foreign goods (in the range 0.5 to 1.5) in order to explain co-movements of relative prices and relative quantities.

To go deeper into the analysis of the relation between corporate taxation and exports we also run the same Probit and Tobit regression on a panel built by matching the last two waves of the Survey. This dataset covers the years between 2001 and 2006 and comprises about 880 firms of which 755 are involved in export activity.

We consider the impact of the corporate tax of year 2001 on export decisions relative to 2003 and 2006.

Results\[^{20}\] confirm the positive relation between the effective tax rates and exports in the short term (2001-2003). In the longer term (2001-2006) this relation remains positive, though at a lower level of significance. Indeed, as pointed out above, reaction of export activity to changes in corporate taxation may be viewed as a short-medium term phenomenon.

6. **Conclusions.**

In this paper we have analysed the response of export participation and export sales at firm level\[^{20}\] For the sake of brevity the results are not reported but are available upon request.
to corporate taxation. For this purpose we have estimated a Probit and a Tobit model using a
dataset combining survey data (Indagine sulle Imprese Manifatturiere) with company accounts
for the Italian manufacturing sector. Data are collected by the Unicredit Bank and refer to the

Differently from what one might expect, the probability of engaging in exports is positively
affected by the effective average tax rate and higher export sales are associated with increases in
the marginal tax rate.

The empirical analysis builds on recent findings of the corporate tax incidence literature. Indeed,
the results are consistent with the strategy of internationalized firms suggesting greater ability to
shift their tax burden on international markets.

While further analysis is clearly merited, we think that our paper is a contribution to the
understanding of the determinants of export strategies at firm level.

Additional investigation of the dynamics of firm internationalization choices to tax policy
changes will be a topic for future studies.
References

Egger P. and Loretz S. (2010), Homogeneous Profit Tax Effects for Heterogeneous Firms?, *The World Economy* 33(8), 1023-41

